Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14611-6. doi: 10.1073/pnas.0907682106. Epub 2009 Aug 10.

Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fMRI.

Author information

1
Department of Psychology, University of Montreal, Montreal, Canada. marc.schoenwiesner@umontreal.ca

Abstract

Are visual and auditory stimuli processed by similar mechanisms in the human cerebral cortex? Images can be thought of as light energy modulations over two spatial dimensions, and low-level visual areas analyze images by decomposition into spatial frequencies. Similarly, sounds are energy modulations over time and frequency, and they can be identified and discriminated by the content of such modulations. An obvious question is therefore whether human auditory areas, in direct analogy to visual areas, represent the spectro-temporal modulation content of acoustic stimuli. To answer this question, we measured spectro-temporal modulation transfer functions of single voxels in the human auditory cortex with functional magnetic resonance imaging. We presented dynamic ripples, complex broadband stimuli with a drifting sinusoidal spectral envelope. Dynamic ripples are the auditory equivalent of the gratings often used in studies of the visual system. We demonstrate selective tuning to combined spectro-temporal modulations in the primary and secondary auditory cortex. We describe several types of modulation transfer functions, extracting different spectro-temporal features, with a high degree of interaction between spectral and temporal parameters. The overall low-pass modulation rate preference of the cortex matches the modulation content of natural sounds. These results demonstrate that combined spectro-temporal modulations are represented in the human auditory cortex, and suggest that complex signals are decomposed and processed according to their modulation content, the same transformation used by the visual system.

PMID:
19667199
PMCID:
PMC2732853
DOI:
10.1073/pnas.0907682106
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center