Format

Send to

Choose Destination
See comment in PubMed Commons below
Anticancer Res. 2009 Sep;29(9):3675-84.

How to optimize vitamin D supplementation to prevent cancer, based on cellular adaptation and hydroxylase enzymology.

Author information

1
Department of Nutritional Sciences, University of Toronto, and Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada. rvieth@mtsinai.on.ca

Abstract

The question of what makes an 'optimal' vitamin D intake is usually equivalent to, 'what serum 25-hydroxyvitamin D [25(OH)D] do we need to stay above to minimize risk of disease?'. This is a simplistic question that ignores the evidence that fluctuating concentrations of 25(OH)D may in themselves be a problem, even if concentrations do exceed a minimum desirable level. Vitamin D metabolism poses unique problems for the regulation of 1,25-dihydroxyvitamin D [1,25(OH)2D] concentrations in the tissues outside the kidney that possess 25(OH)D-1-hydroxylase [CYP27B1] and the catabolic enzyme, 1,25(OH)2D-24-hydroxylase [CYP24]. These enzymes behave according to first-order reaction kinetics. When 25(OH)D declines, the ratio of 1-hydroxylase/24-hydroxylase must increase to maintain tissue 1,25(OH)2D at its set-point level. The mechanisms that regulate this paracrine metabolism are poorly understood. I propose that delay in cellular adaptation, or lag time, in response to fluctuating 25(OH)D concentrations can explain why higher 25(OH)D in regions at high latitude or with low environmental ultraviolet light can be associated with the greater risks reported for prostate and pancreatic cancers. At temperate latitudes, higher summertime 25(OH)D levels are followed by sharper declines in 25(OH)D, causing inappropriately low 1-hydroxylase and high 24-hydroxylase, resulting in tissue 1,25(OH)2D below its ideal set-point. This hypothesis can answer concerns raised by the World Health Organization's International Agency for Research on Cancer about vitamin D and cancer risk. It also explains why higher 25(OH)D concentrations are not good if they fluctuate, and that desirable 25(OH)D concentrations are ones that are both high and stable.

PMID:
19667164
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center