Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2009 Oct 9;284(41):28069-83. doi: 10.1074/jbc.M109.028266. Epub 2009 Aug 7.

A PH domain in the Arf GTPase-activating protein (GAP) ARAP1 binds phosphatidylinositol 3,4,5-trisphosphate and regulates Arf GAP activity independently of recruitment to the plasma membranes.

Author information

  • 1Laboratory of Cellular and Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA.

Abstract

ARAP1 is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf GTPase-activating protein (GAP) with five PH domains that regulates endocytic trafficking of the epidermal growth factor receptor (EGFR). Two tandem PH domains are immediately N-terminal of the Arf GAP domain, and one of these fits the consensus sequence for PtdIns(3,4,5)P(3) binding. Here, we tested the hypothesis that PtdIns(3,4,5)P(3)-dependent recruitment mediated by the first PH domain of ARAP1 regulates the in vivo and in vitro function of ARAP1. We found that PH1 of ARAP1 specifically bound to PtdIns(3,4,5)P(3), but with relatively low affinity (approximately 1.6 microm), and the PH domains did not mediate PtdIns(3,4,5)P(3)-dependent recruitment to membranes in cells. However, PtdIns(3,4,5)P(3) binding to the PH domain stimulated GAP activity and was required for in vivo function of ARAP1 as a regulator of endocytic trafficking of the EGFR. Based on these results, we propose a variation on the model for the function of phosphoinositide-binding PH domains. In our model, ARAP1 is recruited to membranes independently of PtdIns(3,4,5)P(3), the subsequent production of which triggers enzymatic activity.

PMID:
19666464
PMCID:
PMC2788858
DOI:
10.1074/jbc.M109.028266
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center