Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2009 Sep 25;284(39):26309-14. doi: 10.1074/jbc.M109.005553. Epub 2009 Aug 4.

Assembly of the fungal SC3 hydrophobin into functional amyloid fibrils depends on its concentration and is promoted by cell wall polysaccharides.

Author information

BioMaDe Technology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.


Class I hydrophobins function in fungal growth and development by self-assembling at hydrophobic-hydrophilic interfaces into amyloid-like fibrils. SC3 of the mushroom-forming fungus Schizophyllum commune is the best studied class I hydrophobin. This protein spontaneously adopts the amyloid state at the water-air interface. In contrast, SC3 is arrested in an intermediate conformation at the interface between water and a hydrophobic solid such as polytetrafluoroethylene (PTFE; Teflon). This finding prompted us to study conditions that promote assembly of SC3 into amyloid fibrils. Here, we show that SC3 adopts the amyloid state at the water-PTFE interface at high concentration (300 microg ml(-1)) and prolonged incubation (16 h). Moreover, we show that amyloid formation at both the water-air and water-PTFE interfaces is promoted by the cell wall components schizophyllan (beta(1-3),beta(1-6)-glucan) and beta(1-3)-glucan. Hydrophobin concentration and cell wall polysaccharides thus contribute to the role of SC3 in formation of aerial hyphae and in hyphal attachment.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center