Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cell Mol Med. 2010 Oct;14(10):2470-82. doi: 10.1111/j.1582-4934.2009.00863.x.

Thymic involution, a co-morbidity factor in amyotrophic lateral sclerosis.

Author information

1
Maxine-Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating disease, characterized by extremely rapid loss of motor neurons. Our studies over the last decade have established CD4(+) T cells as important players in central nervous system maintenance and repair. Those results, together with recent findings that CD4(+) T cells play a protective role in mouse models of ALS, led us to the current hypothesis that in ALS, a rapid T-cell malfunction may develop in parallel to the motor neuron dysfunction. Here, we tested this hypothesis by assessing thymic function, which serves as a measure of peripheral T-cell availability, in an animal model of ALS (mSOD1 [superoxide dismutase] mice; G93A) and in human patients. We found a significant reduction in thymic progenitor-cell content, and abnormal thymic histology in 3-4-month-old mSOD1 mice. In ALS patients, we found a decline in thymic output, manifested in the reduction in blood levels of T-cell receptor rearrangement excision circles, a non-invasive measure of thymic function, and demonstrated a restricted T-cell repertoire. The morbidity of the peripheral immune cells was also manifested in the increase of pro-apoptotic BAX/BCXL2 expression ratio in peripheral blood mononuclear cells (PBMCs) of these patients. In addition, gene expression screening in the same PBMCs, revealed in the ALS patients a reduction in key genes known to be associated with T-cell activity, including: CD80, CD86, IFNG and IL18. In light of the reported beneficial role of T cells in animal models of ALS, the present observation of thymic dysfunction, both in human patients and in an animal model, might be a co-pathological factor in ALS, regardless of the disease aetiology. These findings may lead to the development of novel therapeutic approaches directed at overcoming the thymic defect and T-cell deficiency.

PMID:
19650830
PMCID:
PMC3823164
DOI:
10.1111/j.1582-4934.2009.00863.x
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center