Send to

Choose Destination
PLoS One. 2009 Jul 31;4(7):e6467. doi: 10.1371/journal.pone.0006467.

Sin nombre virus and rodent species diversity: a test of the dilution and amplification hypotheses.

Author information

Department of Biology, Westminster College, Salt Lake City, Utah, United States of America.



Species diversity is proposed to greatly impact the prevalence of pathogens. Two predominant hypotheses, the "Dilution Effect" and the "Amplification Effect", predict divergent outcomes with respect to the impact of species diversity. The Dilution Effect predicts that pathogen prevalence will be negatively correlated with increased species diversity, while the Amplification Effect predicts that pathogen prevalence will be positively correlated with diversity. For many host-pathogen systems, the relationship between diversity and pathogen prevalence has not be empirically examined.


We tested the Dilution and Amplification Effect hypotheses by examining the prevalence of Sin Nombre virus (SNV) with respect to diversity of the nocturnal rodent community. SNV is directly transmitted primarily between deer mice (Peromyscus maniculatus). Using mark-recapture sampling in the Spring and Fall of 2003-2005, we measured SNV prevalence in deer mice at 16 landscape level sites (3.1 hectares each) that varied in rodent species diversity. We explored several mechanisms by which species diversity may affect SNV prevalence, including reduced host density, reduced host persistence, the presence of secondary reservoirs and community composition. We found a negative relationship between species diversity and SNV prevalence in deer mice, thereby supporting the Dilution Effect hypothesis. Deer mouse density and persistence were lower at sites with greater species diversity; however, only deer mouse persistence was positively correlated with SNV prevalence. Pinyon mice (P. truei) may serve as dilution agents, having a negative effect on prevalence, while kangaroo rats (Dipodomys ordii), may have a positive effect on the prevalence of SNV, perhaps through effects on deer mouse behavior.


While previous studies on host-pathogen systems have found patterns of diversity consistent with either the Dilution or Amplification Effects, the mechanisms by which species diversity influences prevalence have not been investigated. Our study indicates that changes in host persistence, coupled with interspecific interactions, are important mechanisms through which diversity may influence patterns of pathogens. Our results reveal the complexity of rodent community interactions with respect to SNV dynamics.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center