Send to

Choose Destination
See comment in PubMed Commons below
Microbiology. 2009 Oct;155(Pt 10):3187-99. doi: 10.1099/mic.0.029892-0. Epub 2009 Jul 30.

Phylogenetic evidence for extensive horizontal gene transfer of type III secretion system genes among enterobacterial plant pathogens.

Author information

Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.


This study uses sequences from four genes, which are involved in the formation of the type III secretion apparatus, to determine the role of horizontal gene transfer in the evolution of virulence genes for the enterobacterial plant pathogens. Sequences of Erwinia, Brenneria, Pectobacterium, Dickeya and Pantoea were compared (a) with one another, (b) with sequences of enterobacterial animal pathogens, and (c) with sequences of plant pathogenic gamma and beta proteobacteria, to evaluate probable paths of lateral exchange leading to the current distribution of virulence determinants among these micro-organisms. Phylogenies were reconstructed based on hrcC, hrcR, hrcJ and hrcV gene sequences using parsimony and maximum-likelihood algorithms. Virulence gene phylogenies were also compared with several housekeeping gene loci in order to evaluate patterns of lateral versus vertical acquisition. The resulting phylogenies suggest that multiple horizontal gene transfer events have occurred both within and among the enterobacterial plant pathogens and plant pathogenic gamma and beta proteobacteria. hrcJ sequences are the most similar, exhibiting anywhere from 2 to 50 % variation at the nucleotide level, with the highest degree of variation present between plant and animal pathogen sequences. hrcV sequences are conserved among plant and animal pathogens at the N terminus. The C-terminal domain is conserved only among the enterobacterial plant pathogens, as are the hrcC and hrcR sequences. Additionally, hrcJ and hrcV sequence phylogenies suggest that at least some type III secretion system virulence genes from enterobacterial plant pathogens are related more closely to those of the genus Pseudomonas, a conclusion neither supported nor refuted by hrcC or hrcR.

[Indexed for MEDLINE]

Publication types, MeSH terms, Substances, Secondary source ID

Publication types

MeSH terms


Secondary source ID

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Ingenta plc
    Loading ...
    Support Center