Send to

Choose Destination
See comment in PubMed Commons below
J Biomech Eng. 2009 Jul;131(7):074505. doi: 10.1115/1.3127258.

A microfluidic manipulator for enrichment and alignment of moving cells and particles.

Author information

Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA.


Grooved structures have been widely studied in particle separation and fluid mixing in microfluidic channel systems. In this brief report, we demonstrate the use of patterning flows produced by two different sorts of grooved surfaces: single slanted groove series (for enrichment patterns) and V-shaped groove series (for focusing patterns), into a microfluidic device to continuously manipulate the flowing particles, including microbeads with 6 microm, 10 microm, and 20 microm in diameter and mouse dendritic cells of comparable sizes to the depth of the channel. The device with grooved channels was developed and fabricated by soft-lithographic techniques. The particle distributions after passing through the single slanted grooves illustrate the size-dependent enrichment profiles. On the other hand, particles passing through the V-shaped grooves show focusing patterns downstream, for the combination effect from both sides of single slanted grooves setup side-by-side. Compared with devices utilizing sheath flows, the focusing patterns generated in this report are unique without introducing additional flow control. The alignment of the concentrated particles is expected to facilitate the visualization of sizing and counting in cell-based devices. On the other hand, the size-dependent patterns of particle distributions have the potential for the application of size-based separation.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center