Send to

Choose Destination
Phys Chem Chem Phys. 2009 Aug 21;11(31):6743-9. doi: 10.1039/b908460f. Epub 2009 Jun 29.

Magnetic quantum tunneling: key insights from multi-dimensional high-field EPR.

Author information

Department of Physics, University of Arizona, Tucson, Arizona 85721, USA.


Multi-dimensional high-field/frequency electron paramagnetic resonance (HFEPR) spectroscopy is performed on single-crystals of the high-symmetry spin S = 4 tetranuclear single-molecule magnet (SMM) [Ni(hmp)(dmb)Cl](4), where hmp(-) is the anion of 2-hydroxymethylpyridine and dmb is 3,3-dimethyl-1-butanol. Measurements performed as a function of the applied magnetic field strength and its orientation within the hard-plane reveal the four-fold behavior associated with the fourth order transverse zero-field splitting (ZFS) interaction, (1/2)B(S + S), within the framework of a rigid spin approximation (with S = 4). This ZFS interaction mixes the m(s) = +/-4 ground states in second order of perturbation, generating a sizeable (12 MHz) tunnel splitting, which explains the fast magnetic quantum tunneling in this SMM. Meanwhile, multi-frequency measurements performed with the field parallel to the easy-axis reveal HFEPR transitions associated with excited spin multiplets (S < 4). Analysis of the temperature dependence of the intensities of these transitions enables determination of the isotropic Heisenberg exchange constant, J = -6.0 cm(-1), which couples the four spin s = 1 Ni(II) ions within the cluster, as well as a characterization of the ZFS within excited states. The combined experimental studies support recent work indicating that the fourth order anisotropy associated with the S = 4 state originates from second order ZFS interactions associated with the individual Ni(II) centers, but only as a result of higher-order processes that occur via S-mixing between the ground state and higher-lying (S < 4) spin multiplets. We argue that this S-mixing plays an important role in the low-temperature quantum dynamics associated with many other well known SMMs.


Supplemental Content

Full text links

Icon for Royal Society of Chemistry
Loading ...
Support Center