Send to

Choose Destination
Br J Cancer. 2009 Aug 18;101(4):699-706. doi: 10.1038/sj.bjc.6605195. Epub 2009 Jul 28.

MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer.

Author information

Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.



MicroRNAs (miRNAs) are 19-25-nucleotides regulatory non-protein-coding RNA molecules that regulate the expressions of a wide variety of genes, including some involved in cancer development. In this study, we investigated the possible role of miR-143 in colorectal cancer (CRC).


Expression levels of human mature miRNAs were examined using real-time PCR-based expression arrays on paired colorectal carcinomas and adjacent non-cancerous colonic tissues. The downregulation of miR-143 was further evaluated in colon cancer cell lines and in paired CRC and adjacent non-cancerous colonic tissues by qRT-PCR. Potential targets of miR-143 were defined. The functional effect of miR-143 and its targets was investigated in human colon cancer cell lines to confirm miRNA-target association.


Both real-time PCR-based expression arrays and qRT-PCR showed that miR-143 was frequently downregulated in 87.5% (35 of 40) of colorectal carcinoma tissues compared with their adjacent non-cancerous colonic tissues. Using in silico predictions, DNA methyltranferase 3A (DNMT3A) was defined as a potential target of miR-143. Restoration of the miR-143 expression in colon cell lines decreased tumour cell growth and soft-agar colony formation, and downregulated the DNMT3A expression in both mRNA and protein levels. DNMT3A was shown to be a direct target of miR-143 by luciferase reporter assay. Furthermore, the miR-143 expression was observed to be inversely correlated with DNMT3A mRNA and protein expression in CRC tissues.


Our findings suggest that miR-143 regulates DNMT3A in CRC. These findings elucidated a tumour-suppressive role of miR-143 in the epigenetic aberration of CRC, providing a potential development of miRNA-based targeted approaches for CRC therapy.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center