Send to

Choose Destination
See comment in PubMed Commons below
Eur J Immunol. 2009 Aug;39(8):2259-69. doi: 10.1002/eji.200939341.

The duration of TCR/pMHC interactions regulates CTL effector function and tumor-killing capacity.

Author information

Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.


Effector CTL contribute to tumoral immunity by killing tumor cells through secretion of cytotoxic granules and cytokines. Activation of CTL requires specific recognition of cognate peptide-MHC-I (pMHC) complexes on the tumor cell surface by the CTL TCR. It has been suggested that the half-life (t(1/2)) of the TCR/pMHC interaction modulates the activation of naïve CD8(+) T cells; however, it remains unknown whether CTL effector function can also be regulated by the TCR/pMHC t(1/2). Here, we have studied CTL activity in response to tumor cells loaded with pMHC that bind the TCR with different t(1/2). We observed that the TCR/pMHC t(1/2) can differentially regulate CTL effector function during the interaction with tumor cells and defines the nature of anti-tumoral CTL responses in vivo. Although prolonged TCR/pMHC t(1/2) promoted only partial expression of cytotoxic molecules, short t(1/2) induced partial polarization of lytic machinery toward target cells. In contrast, intermediate TCR/pMHC t(1/2) induced strong expression of cytotoxic molecules, efficient polarization of lytic machinery and subsequent release of toxic granules by CTL that killed tumor cells. Consistently, efficient in vivo CTL-mediated tumor clearance was only observed for tumors expressing intermediate t(1/2) pMHC ligands. These data suggest that there is an optimal TCR/pMHC t(1/2) for efficient CTL activity.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center