Format

Send to

Choose Destination
Dev Dyn. 2009 Sep;238(9):2292-308. doi: 10.1002/dvdy.22036.

Cell-autonomous requirements for Dlg-1 for lens epithelial cell structure and fiber cell morphogenesis.

Author information

1
Department of Anatomy, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.

Abstract

Cell polarity and adhesion are thought to be key determinants in organismal development. In Drosophila, discs large (dlg) has emerged as an important regulator of epithelial cell proliferation, adhesion, and polarity. Herein, we investigated the role of the mouse homolog of dlg (Dlg-1) in the development of the mouse ocular lens. Tissue-specific ablation of Dlg-1 throughout the lens early in lens development led to an expansion and disorganization of the epithelium that correlated with changes in the distribution of adhesion and polarity factors. In the fiber cells, differentiation defects were observed. These included alterations in cell structure and the disposition of cell adhesion/cytoskeletal factors, delay in denucleation, and reduced levels of alpha-catenin, pERK1/2, and MIP26. These fiber cell defects were recapitulated when Dlg-1 was disrupted only in fiber cells. These results suggest that Dlg-1 acts in a cell autonomous manner to regulate epithelial cell structure and fiber cell differentiation.

PMID:
19623611
PMCID:
PMC3016059
DOI:
10.1002/dvdy.22036
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center