Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuropharmacology. 2009 Sep;57(4):347-55. doi: 10.1016/j.neuropharm.2009.07.020. Epub 2009 Jul 18.

Characterization of pharmacological and behavioral differences to nicotine in C57Bl/6 and DBA/2 mice.

Author information

1
Department of Pharmacology and Toxicology, Medical Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA. jacksonkj@vcu.edu

Abstract

Approximately 50-70% of the risk for developing nicotine dependence is attributed to genetics; therefore, it is of great significance to characterize the genetic mechanisms involved in nicotine reinforcement and dependence in hopes of generating better smoking cessation therapies. The overall goal of these studies was to characterize behavioral and pharmacological responses to nicotine in C57Bl/6 (B6) and DBA/2 (D2) mice, two inbred strains commonly used for genetic studies on behavioral traits. B6 and D2 mice where subjected to a battery of behavioral tests to measure nicotine's acute effects, calcium-mediated antinociceptive responses, tolerance to chronic treatment with osmotic mini pumps, and following three days of nicotine withdrawal. In general, D2 mice were less sensitive than B6 mice to the acute effects of nicotine, but were more sensitive to blockade of nicotine-induced antinociceptive responses by a calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor. B6, but not D2 mice, developed tolerance to nicotine and nicotine conditioned place preference (CPP). While B6 and D2 mice both expressed some physical withdrawal signs, affective withdrawal signs were not evident in D2 mice. These results provide a thorough, simultaneous evaluation of the pharmacological and behavioral differences to experimenter-administered nicotine as measured in several behavioral tests of aspects that contribute to smoking behavior. The B6 and D2 strains show wide phenotypic differences in their responses to acute or chronic nicotine. These results suggest that these strains may be useful progenitors for future genetic studies on nicotine behaviors across batteries of mouse lines such as the BXD recombinant inbred panel.

PMID:
19619563
PMCID:
PMC2753410
DOI:
10.1016/j.neuropharm.2009.07.020
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center