Format

Send to

Choose Destination
See comment in PubMed Commons below
Glycobiology. 2009 Oct;19(10):1082-93. doi: 10.1093/glycob/cwp094. Epub 2009 Jul 17.

The second bovine beta-galactoside-alpha2,6-sialyltransferase (ST6Gal II): genomic organization and stimulation of its in vitro expression by IL-6 in bovine mammary epithelial cells.

Author information

  • 1UMR1061, Unité de Génétique Moléculaire Animale, Université de Limoges, INRA, IFR N degrees 145 GEIST, France.

Abstract

We have cloned a cDNA sequence encoding the second bovine beta-galactoside-alpha2,6-sialyltransferase whose sequence shares more than 75% of identity with hST6Gal II cDNA coding sequence. The bovine gene, located on BTA 11, spans over 50 kbp with five exons (E1-E5) containing the 1488 bp open reading frame and a 5'-untranslated exon (E0). The gene expression pattern reveals a specific tissue distribution (brain, lungs, spleen, salivary, and mammary glands) compared to ST6Gal I which is ubiquitously expressed. We identified for bovine ST6Gal II three kinds of transcripts which differ by their 5'-untranslated regions. Among them, two transcripts are brain specific whereas the third one is found in all of the tissues expressing the gene. Two pFlag-bST6Gal II vector constructions were separately transfected in COS-1 cells in order to express either membrane-bound or soluble active forms of ST6Gal II. Enzymatic assays with these two forms indicated that the enzyme used the LacdiNAc structure (GalNAcbeta1,4GlcNAc) as a better acceptor substrate than the Type II (Galbeta1-4GlcNAc) disaccharide. Moreover, the enzyme's efficiency is improved when the acceptor substrate is provided as a free oligosaccharide rather than as a protein-bound oligosaccharide. In order to investigate the potential role of ST6Gal II during the acute phase of inflammation, we used primary cultures of bovine mammary epithelial cells which were stimulated with pro-inflammatory cytokines. It appears that the ST6Gal II gene was upregulated in cells stimulated by IL-6. This result suggested that alpha2,6-sialylation mediated by this gene could contribute to organism's response to infections.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk