Send to

Choose Destination
See comment in PubMed Commons below
J Biotechnol. 2009 Nov;144(3):224-33. doi: 10.1016/j.jbiotec.2009.07.009. Epub 2009 Jul 17.

Molecular networks and system-level properties.

Author information

  • 1Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milano, Italy.


Molecular systems biology aims to describe the functions of complex biological processes through recursive integration of molecular analysis, modeling, simulation and theory. It focuses on networks that originate from interconnection of genes, proteins and metabolites whose dynamic interactions generate, as an emergent property of the system, the corresponding function. Although evolutionary optimized, intracellular biochemical parameters, such as the expression level of gene products or the affinity between two or more proteins, must have a permissible range that gives robustness against perturbations to the system. Using the yeast G(1)-to-S transition network as an example we show that sophisticated relations exist among network structure, emergent property and robustness. Different emergent properties are generated from the same network by changing the strength of its interactions, not only by altering expression level, but also through mono and multi-site phosphorylation/dephosphorylation. Besides, multi-site protein phosphorylation modules, widespread in cell cycle, may ensure robust and coherent timing of cell cycle transitions as it happens for the onset of DNA replication. In conclusion, the modulation of biological function/emergent property by modifying interaction strength provides an efficient, highly tunable device to regulate biological processes. Furthermore, the principles outlined herein may provide new insight to network analysis in drug discovery.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center