Format

Send to

Choose Destination
Biotechnol J. 2009 Sep;4(9):1328-36. doi: 10.1002/biot.200900075.

scFv-based fluorogen activating proteins and variable domain inhibitors as fluorescent biosensor platforms.

Author information

1
Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.

Abstract

Single chain antibodies (scFvs) are engineered proteins composed of IgG variable heavy (V(H)) and variable light (V(L)) domains tethered together by a flexible peptide linker. We have characterized the individual V(H) or V(L) domain activities of several scFvs isolated from a yeast surface-display library for their ability to bind environmentally sensitive fluorogenic dyes causing them to fluoresce. For many of the scFvs, both V(H) and V(L) domains are required for dye binding and fluorescence. The analysis of other scFvs, however, revealed that either the V(H) or the V(L) domain alone is sufficient to cause the fluorogenic dye activation. Furthermore, the inactive complementary domains in the original scFvs either contribute nothing to, or actually inhibit the activity of these active single domains. We have explored the interactions between active variable domains and inactive complementary domains by extensive variable domain swapping through in vitro gene manipulations to create hybrid scFvs. In this study, we demonstrate that significant alteration of the fluorogenic dye activation by the active V(H) or V(L) domains can occur by partnering with different V(H) or V(L) complementary domains in the scFv format. Hybrid scFvs can be generated that have fluorogen-activating domains that are completely inhibited by interactions with other domains. Such hybrid scFvs are excellent platforms for the development of several types of genetically encoded, fluorescence-generating biosensors.

PMID:
19606431
DOI:
10.1002/biot.200900075
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center