Format

Send to

Choose Destination
Environ Sci Technol. 2009 Jun 15;43(12):4472-9.

Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste.

Author information

1
Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.

Abstract

Phytoremediation of total petroleum hydrocarbons (TPH) has the potential to be a sustainable waste management technology if it can be proven to be effective in the field. Over the past decade, our laboratory has developed a system which utilizes plant growth promoting rhizobacteria (PGPR) enhanced phytoremediation (PEP) that, following extensive greenhouse testing, was shown to be effective at remediating TPH from soils. This system consists of physical soil manipulation and plant growth following seed inoculation with PGPR. PGPR elicit biomass increases, particularly in roots, by minimizing plant stress in highly contaminated soils. Extensive development of the root system enhances degradation of contaminants by the plants and supports an active rhizosphere that effectively promotes TPH degradation by a broad microbial consortium. Following promising greenhouse trials, field tests of PEP were performed over a period of three years at a Southern Ontario site (approximately 130 g kg(-1) TPH) used for land farming of refinery hydrocarbon waste for many years. The low molecular weight fractions (the Canadian Council of Ministers of the Environment (CCME) fractions 1 and 2) were removed through land farming and bioremediation; the high molecular weight, recalcitrant fractions (CCME fractions 3 and 4) remained at high levels in the soil. Using PEP, we substantially remediated fractions 3 and 4, and lowered TPH from 130 g kg(-1) to approximately 50 g kg(-1) over a three year period. The amount of plant growth and extent of oil remediation were consistently enhanced by PGPR.

PMID:
19603664
DOI:
10.1021/es801540h
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center