Format

Send to

Choose Destination
Clin Exp Pharmacol Physiol. 2009 Jul;36(7):619-25. doi: 10.1111/j.1440-1681.2008.05115.x.

Role of extracellular Na+, Ca2+-activated Cl- channels and BK channels in the contraction of Ca2+ store-depleted tracheal smooth muscle.

Author information

1
Department of Physiology, School of Medicine, University of San Luis Potosi, San Luis Potosi, México.

Abstract

1. In the present study, we investigated the series of events involved in the contraction of tracheal smooth muscle induced by the re-addition of Ca(2+) in an in vitro experimental model in which Ca(2+) stores had been depleted and their refilling had been blocked by thapsigargin. 2. Mean (+/-SEM) contraction was diminished by: (i) inhibitors of store-operated calcium channels (SOCC), namely 100 micromol/L SKF-96365 and 100 micromol/L 1-(2-trifluoromethylphenyl) imidazole (to 66.3 +/- 4.4 and 41.3 +/- 5.2% of control, respectively); (ii) inhibitors of voltage-gated Ca(2+) channels Ca(V)1.2 channels, namely 1 micromol/L nifedipine and 10 micromol/L verapamil (to 86.2 +/- 3.4 and 76.9 +/- 5.9% of control, respectively); and (iii) 20 micromol/L niflumic acid, a non-selective inhibitor of Ca(2+)-dependent Cl(-) channels (to 41.1 +/- 9.8% of control). In contrast, contraction was increased 2.3-fold by 100 nmol/L iberiotoxin, a blocker of the large-conductance Ca(2+)-activated K(+) (BK) channels. 3. Furthermore, contraction was significantly inhibited when Na(+) in the bathing solution was replaced by N-methyl-D-glucamine (NMDG(+)) to 39.9 +/- 7.2% of control, but not when it was replaced by Li(+) (114.5 +/- 24.4% of control). In addition, when Na(+) had been replaced by NMDG(+), contractions were further inhibited by both nifedipine and niflumic acid (to 3.0 +/- 1.8 and 24.4 +/- 8.1% of control, respectively). Nifedipine also reduced contractions when Na(+) had been replaced by Li(+) (to 10.7 +/- 3.4% to control), the niflumic acid had no effect (116.0 +/- 4.5% of control). 4. In conclusion, the data of the present study demonstrate the roles of SOCC, BK channels and Ca(V)1.2 channels in the contractions induced by the re-addition of Ca(2+) to the solution bathing guinea-pig tracheal rings under conditions of Ca(2+)-depleted sarcoplasmic reticulum and inhibition of sarcoplasmic/endoplasmic reticulum calcium ATPase. The contractions were highly dependent on extracellular Na(+), suggesting a role for SOCC in mediating the Na(+) influx.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center