Format

Send to

Choose Destination
BMC Infect Dis. 2009 Jul 7;9:107. doi: 10.1186/1471-2334-9-107.

Inactivation of murine norovirus by chemical biocides on stainless steel.

Author information

1
MikroLab GmbH, Norderoog 2, D-28259 Bremen, Germany. magulski@gmx.de

Abstract

BACKGROUND:

Human norovirus (NoV) causes more than 80% of nonbacterial gastroenteritis in Europe and the United States. NoV transmission via contaminated surfaces may be significant for the spread of viruses. Therefore, measures for prevention and control, such as surface disinfection, are necessary to interrupt the dissemination of human NoV. Murine norovirus (MNV) as a surrogate for human NoV was used to study the efficacy of active ingredients of chemical disinfectants for virus inactivation on inanimate surfaces.

METHODS:

The inactivating properties of different chemical biocides were tested in a quantitative carrier test with stainless steel discs without mechanical action. Vacuum-dried MNV was exposed to different concentrations of alcohols, peracetic acid (PAA) or glutaraldehyde (GDA) for 5 minutes exposure time. Detection of residual virus was determined by endpoint-titration on RAW 264.7 cells.

RESULTS:

PAA [1000 ppm], GDA [2500 ppm], ethanol [50% (v/v)] and 1-propanol [30% (v/v)] were able to inactivate MNV under clean conditions (0.03% BSA) on the carriers by > or = 4 log10 within 5 minutes exposure time, whereas 2-propanol showed a reduced effectiveness even at 60% (v/v). Furthermore, there were no significant differences in virus reduction whatever interfering substances were used. When testing with ethanol, 1- and 2-propanol, results under clean conditions were nearly the same as in the presence of dirty conditions (0.3% BSA plus 0.3% erythrocytes).

CONCLUSION:

Products based upon PAA, GDA, ethanol and 1-propanol should be used for NoV inactivation on inanimate surfaces. Our data provide valuable information for the development of strategies to control NoV transmission via surfaces.

PMID:
19583832
PMCID:
PMC2714517
DOI:
10.1186/1471-2334-9-107
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center