Recent land degradation and improvement in China

Ambio. 2009 May;38(3):150-6. doi: 10.1579/0044-7447-38.3.150.

Abstract

Land degradation is a global development and environment issue that afflicts China more than most countries in terms of the extent, economic impact, and number of people affected. Up-to-date, quantitative information is needed to support policy and action for food and water security, economic development, and environmental integrity. Data for a defined, recent period enable us to distinguish the legacy of historical land degradation from what is happening now. We define land degradation as long-term decline in ecosystem function and productivity and measure it by remote sensing of the normalized difference vegetation index (NDVI), the greenness index. NDVI may be translated to net primary productivity (NPP). Deviation from the norm serves as a proxy assessment of land degradation and improvement-if other factors that may be responsible are taken into account. These other factors include climate, which may be assessed by rain-use efficiency and energy-use efficiency. Analysis of the 23-year Global Inventory Modeling and Mapping Studies (GIMMS) NDVI data reveals that, in China over the period 1981-2003, NPP increased overall, but areas of declining climate-adjusted NPP comprise 23% of the country, mainly in south China. About 35% of China's population (457 million out of 1317 million) depend on the degrading land. Degrading areas suffered a loss of NPP of 12 kgC ha(-1) y(-1), amounting to almost 60 million tC not fixed from the atmosphere; loss of soil organic carbon from these areas is likely to be orders of magnitude greater. There is no correlation between land degradation and dry lands; it is more of an issue in cropland and forest: 21% of degrading land is cropland and 40% is forest, 24% of the arable and 44% of the forest, respectively. There is no simple statistical relationship between land degradation and rural population density or poverty. Most identified land degradation is in the south and east, driven by unprecedented land-use change.

MeSH terms

  • Biomass
  • China
  • Climate
  • Conservation of Natural Resources*
  • Rain