Send to

Choose Destination
Biochem Biophys Res Commun. 2009 Sep 11;387(1):115-20. doi: 10.1016/j.bbrc.2009.06.137. Epub 2009 Jul 1.

Suppression of thymus- and activation-regulated chemokine (TARC/CCL17) production by 1,2,3,4,6-penta-O-galloyl-beta-D-glucose via blockade of NF-kappaB and STAT1 activation in the HaCaT cells.

Author information

Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon, Republic of Korea.


Keratinocytes, one of major cell types in the skin, can be induced by TNF-alpha and IFN-gamma to express thymus- and activation-regulated chemokine (TARC/CCL17), which is considered to be a pivotal mediator in the inflammatory responses during the development of inflammatory skin diseases, such as atopic dermatitis (AD). In this study, we examined the effect of 1,2,3,4,6-penta-O-galloyl-beta-d-glucose (PGG), isolated from the barks of Juglans mandshurica, on TNF-alpha/IFN-gamma induced CCL17 expression in the human keratinocyte cell line HaCaT. Pretreatment of HaCaT cells with PGG suppressed TNF-alpha/IFN-gamma-induced protein and mRNA expression of CCL17. PGG significantly inhibited TNF-alpha/IFN-gamma-induced NF-kappaB activation as well as STAT1 activation. Furthermore, pretreatment with PGG resulted in significant reduction in expression of CXCL9, 10, and 11 in the HaCaT cells treated with IFN-gamma. These results suggest that PGG may exert anti-inflammatory responses by suppressing TNF-alpha and/or IFN-gamma-induced activation of NF-kappaB and STAT1 in the keratinocytes and might be a useful tool in therapy of skin inflammatory diseases.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center