Send to

Choose Destination
See comment in PubMed Commons below
Brain. 2009 Sep;132(Pt 9):2449-63. doi: 10.1093/brain/awp178. Epub 2009 Jul 2.

Selective changes in GABAA receptor subtypes in white matter neurons of patients with focal epilepsy.

Author information

Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.


Mapping the distribution of GABAA receptor subtypes represents a promising approach to characterize alterations in cortical circuitry associated with neurological disorders. We previously reported subtype-selective changes in GABAA receptor expression in the grey matter of patients with focal epilepsy. In the present follow-up study, we focused on the subcortical white matter in the same tissue specimens obtained at surgery from 9 patients with temporal lobe epilepsy (TLE) and hippocampal sclerosis, 12 patients with TLE associated with neocortical lesions and 5 patients with frontal lobe epilepsy; post-mortem tissue from 4 subjects served as controls. The subunit composition and distribution of three major GABAA receptor subtypes were determined immunohistochemically with subunit-specific antibodies. In all cases, a majority of neurons in the white matter was distinctly labelled, allowing detailed visualization of their dendritic arborization and revealing a differential, cell type-specific expression pattern of alpha-subunit variants. In controls, alpha1-subunit staining was most prominent, displaying a gradient that decreased with depth, in parallel with the density of NeuN-positive cells. Subsets of pyramidal cells were alpha3-subunit-positive, and alpha2-subunit-labelled neurons were rare. In 19 of the 26 patients with focal epilepsy, no changes were detected as compared with controls. In five patients with TLE, striking changes in the dendritic arborization of a subset of white matter neurons were seen with the alpha1-subunit antibody. In two further patients with TLE, we observed a disorganized dendritic network immuno-positive for the alpha1-subunit, cell clusters selectively expressing the alpha2-subunit and small neuronal aggregates that expressed all subunits and appeared to connect to neighbouring white matter neurons. All seven patients with anomalies in the white matter had a selective reduction in alpha3-containing GABAA receptors in the superficial layers of the grey matter. These results demonstrate a distinct organization of GABAA receptors in human white matter neurons, consistent with an inhibitory network that is likely to be integrated functionally with the overlying grey matter. The altered dendritic morphology and changes in GABAA receptor expression in the white matter of a subset of patients with focal epilepsy are suggestive for a rewiring of neuronal circuits.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center