Format

Send to

Choose Destination
Cell Microbiol. 2009 Nov;11(11):1638-51. doi: 10.1111/j.1462-5822.2009.01354.x. Epub 2009 Jul 2.

Temporal resolution of two-tracked NF-kappaB activation by Legionella pneumophila.

Author information

1
Max Planck Institute for Infection Biology, Department of Molecular Biology, Berlin, Germany.

Abstract

The intracellular pathogen Legionella pneumophila activates the transcription factor NF-kappaB in macrophages and human epithelial cells, contributing to cytokine production and anti-apoptosis. The former is important for the innate immune response to infection, the latter for intracellular replication by securing host cell survival. Here, we demonstrate biphasic activation of NF-kappaB by L. pneumophila in human epithelial cells, using a p65-GFP expressing variant of A549 cells. Early in infection, a strong but transient nuclear translocation of p65 was observed. Only flagellin-deficient (DeltafliA and DeltaflaA) mutants could not induce this first, TLR5 and MyD88-dependent activation. The second p65 translocation event, however, is a long-term activation, independent of flagellin, TLR5 and MyD88, and marked by permanent nuclear localization of p65-GFP without oscillation for 30 h. Persistent p65 translocation also involved degradation of IkappaBalpha and upregulation of anti-apoptotic genes. L. pneumophila mutants lacking a functional Dot/Icm secretion system (DeltadotA; DeltaicmB/dotO), Dot/Icm effectors (DeltasdbA; DeltalubX) and two bacterial effector mutants (DeltaenhC; DeltaptsP) could not induce persistent p65 translocation. Strikingly, all these mutants were deficient in intracellular replication in A549 cells. Our data underline the strong connection between NF-kappaB activation and intracellular replication and hints at an active interference of NF-kappaB signalling by L. pneumophila.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center