Format

Send to

Choose Destination
See comment in PubMed Commons below
Evid Based Complement Alternat Med. 2011;2011:249487. doi: 10.1093/ecam/nep060. Epub 2011 Jun 23.

Gastroprotective Effect of Ginger Rhizome (Zingiber officinale) Extract: Role of Gallic Acid and Cinnamic Acid in H(+), K(+)-ATPase/H. pylori Inhibition and Anti-Oxidative Mechanism.

Author information

  • 1Department of Biochemistry and Nutrition, Central Food Technological Research Institute, CSIR, Mysore 570 020, Karnataka, India.

Abstract

Zinger officinale has been used as a traditional source against gastric disturbances from time immemorial. The ulcer-preventive properties of aqueous extract of ginger rhizome (GRAE) belonging to the family Zingiberaceae is reported in the present study. GRAE at 200 mg kg(-1) b.w. protected up to 86% and 77% for the swim stress-/ethanol stress-induced ulcers with an ulcer index (UI) of 50 ± 4.0/46 ± 4.0, respectively, similar to that of lansoprazole (80%) at 30 mg kg(-1) b.w. Increased H(+), K(+)-ATPase activity and thiobarbituric acid reactive substances (TBARS) were observed in ulcer-induced rats, while GRAE fed rats showed normalized levels and GRAE also normalized depleted/amplified anti-oxidant enzymes in swim stress and ethanol stress-induced animals. Gastric mucin damage was recovered up to 77% and 74% in swim stress and ethanol stress, respectively after GRAE treatment. GRAE also inhibited the growth of H. pylori with MIC of 300 ± 38 μg and also possessed reducing power, free radical scavenging ability with an IC(50) of 6.8 ± 0.4 μg mL(-1) gallic acid equivalent (GAE). DNA protection up to 90% at 0.4 μg was also observed. Toxicity studies indicated no lethal effects in rats fed up to 5 g kg(-1) b.w. Compositional analysis favored by determination of the efficacy of individual phenolic acids towards their potential ulcer-preventive ability revealed that between cinnamic (50%) and gallic (46%) phenolic acids, cinnamic acid appear to contribute to better H(+), K(+)-ATPase and Helicobacter pylori inhibitory activity, while gallic acid contributes significantly to anti-oxidant activity.

PMID:
19570992
PMCID:
PMC3136331
DOI:
10.1093/ecam/nep060
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Hindawi Publishing Corporation Icon for PubMed Central
    Loading ...
    Support Center