Send to

Choose Destination
See comment in PubMed Commons below
Hematol Oncol. 2009 Sep;27(3):123-9. doi: 10.1002/hon.901.

Telomeres and telomerase in chronic myeloid leukaemia: impact for pathogenesis, disease progression and targeted therapy.

Author information

Klinik für Onkologie und Hämatologie mit der Sektion Pneumologie, Universitäres Cancer Center Hamburg (UCCH), Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany.


Telomeres are specialized structures localized at the end of human chromosomes. Due to the end replication problem, each cell division results in a loss of telomeric repeats in normal somatic cells. In germ line and stem cells, the multicomponent enzyme telomerase maintains the length of telomere repeats. However, elevated telomerase activity has also been reported in the majority of solid tumours as well as in acute and chronic leukaemia. Chronic myeloid leukaemia (CML) serves as a model disease to study telomere biology in clonal myeloproliferative disorders. In CML, telomere shortening correlates with disease stage, duration of chronic phase (CP), prognosis measured by the Hasford risk score and the response to disease-modifying therapeutics such as the tyrosine kinase inhibitor Imatinib. In addition, telomerase activity (TA) is already increased in CP CML and further upregulated with disease progression to accelerated phase and blast crisis (BC). Furthermore, a correlation of TA with increased genetic instability as well as a shorter survival of the patients has been reported. Here, we review the current state of knowledge of the role of telomere and telomerase biology in CML and discuss the possible impact of novel treatment approaches.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center