Send to

Choose Destination
Anesthesiology. 2009 Aug;111(2):258-66. doi: 10.1097/ALN.0b013e3181a8647f.

Expression of signal transduction genes differs after hypoxic or isoflurane preconditioning of rat hippocampal slice cultures.

Author information

Department of Anesthesia and Perioperative Care, University of California, San Francisco, California 94143-0542, USA.



Preconditioning neurons with noninjurious hypoxia (hypoxic preconditioning, HPC) or the anesthetic isoflurane (APC) induces tolerance of severe ischemic stress. The mechanisms of both types of preconditioning in the hippocampus require moderate increases in intracellular Ca and activation of protein kinase signaling. The authors hypothesized that the expression of signal transduction genes would be similar after APC and HPC.


Hippocampal slice cultures prepared from 9-day-old rats were preconditioned with hypoxia (5 min of 95% nitrogen/5% carbon dioxide) or 1% isoflurane in air/5% carbon dioxide for 1 h. A day later, cultures were subjected to 10 min oxygen and glucose deprivation (simulated ischemia). Intracellular Ca, measured in CA1 neurons at the completion of preconditioning, and cell death in CA1, CA3, and dentate regions was assessed 48 h after simulated ischemia. Message RNA encoding 119 signal transduction genes was quantified with rat complimentary DNA microarrays from pre-oxygen-glucose deprivation samples.


Both APC and HPC increased intracellular Ca approximately 50 nm and decreased CA1, CA3, and dentate neuron death by about 50% after simulated ischemia. Many signaling genes were increased after preconditioning, with hypoxia increasing more apoptosis/survival genes (8 of 10) than isoflurane (0 of 10). In contrast, isoflurane increased more cell cycle/development/growth genes than did hypoxia (8 of 14 genes, vs. 1 of 14).


Despite sharing similar upstream signaling and neuroprotective outcomes, the genomic response to APC and HPC is different. Increased expression of antiapoptosis genes after HPC and cell development genes after APC has implications both for neuroprotection and long-term effects of anesthetics.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center