Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2009 Aug 28;284(35):23734-42. doi: 10.1074/jbc.M109.025064. Epub 2009 Jun 29.

Sequential and compartment-specific phosphorylation controls the life cycle of the circadian CLOCK protein.

Author information

1
Biochemistry Center Heidelberg (BZH), University of Heidelberg, Heidelberg 69120, Germany.

Abstract

The circadian clock facilitates a temporal coordination of most homeostatic activities and their synchronization with the environmental cycles of day and night. The core oscillating activity of the circadian clock is formed by a heterodimer of the transcription factors CLOCK (CLK) and CYCLE (CYC). Post-translational regulation of CLK/CYC has previously been shown to be crucial for clock function and accurate timing of circadian transcription. Here we report that a sequential and compartment-specific phosphorylation of the Drosophila CLK protein assigns specific localization and activity patterns. Total and nuclear amounts of CLK protein were found to oscillate over the course of a day in circadian neurons. Detailed analysis of the cellular distribution and phosphorylation of CLK revealed that newly synthesized CLK is hypophosphorylated in the cytoplasm prior to nuclear import. In the nucleus, CLK is converted into an intermediate phosphorylation state that correlates with trans-activation of circadian transcription. Hyperphosphorylation and degradation are promoted by nuclear export of the CLK protein. Surprisingly, CLK localized to discrete nuclear foci in cell culture as well as in circadian neurons of the larval brain. These subnuclear sites likely contain a storage form of the transcription factor, while homogeneously distributed nuclear CLK appears to be the transcriptionally active form. These results show that sequential post-translational modifications and subcellular distribution regulate the activity of the CLK protein, indicating a core post-translational timing mechanism of the circadian clock.

PMID:
19564332
PMCID:
PMC2749147
DOI:
10.1074/jbc.M109.025064
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center