Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Aspects Med. 2009 Dec;30(6):413-22. doi: 10.1016/j.mam.2009.06.003. Epub 2009 Jun 27.

Membrane translocation by anthrax toxin.

Author information

1
Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, United States. jcollier@hms.harvard.edu

Abstract

Much attention has been focused on anthrax toxin recently, both because of its central role in the pathogenesis of Bacillus anthracis and because it has proven to be one of the most tractable toxins for studying how enzymic moieties of intracellularly acting toxins traverse membranes. The Protective Antigen (PA) moiety of the toxin, after being proteolytically activated at the cell surface, self-associates to form a heptameric pore precursor (prepore). The prepore binds up to three molecules of Edema Factor (EF), Lethal Factor (LF), or both, forming a series of complexes that are then endocytosed. Under the influence of acidic pH within the endosome, the prepore undergoes a conformational transition to a mushroom-shaped pore, with a globular cap and 100A-long stem that spans the membrane. Electrophysiological studies in planar bilayers indicate that EF and LF translocate through the pore in unfolded form and in the N- to C-terminal direction. The pore serves as an active transporter, which translocates its proteinaceous cargo across the endosomal membrane in response to DeltapH and perhaps, to a degree, Deltapsi. A ring of seven Phe residues (Phe427) in the lumen of the pore forms a seal around the translocating polypeptide and blocks the passage of ions, presumably preserving the pH gradient. A charge state-dependent Brownian ratchet mechanism has been proposed to explain how the pore translocates EF and LF. This transport mechanism of the pore may function in concert with molecular chaperonins to effect delivery of effector proteins in catalytically active form to the cytosolic compartment of host cells.

PMID:
19563824
PMCID:
PMC2783560
DOI:
10.1016/j.mam.2009.06.003
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center