Send to

Choose Destination
See comment in PubMed Commons below
Neurochem Int. 2009 Dec;55(7):662-70. doi: 10.1016/j.neuint.2009.06.012. Epub 2009 Jun 26.

Oxidative stress promotes JNK-dependent amyloidogenic processing of normally expressed human APP by differential modification of alpha-, beta- and gamma-secretase expression.

Author information

Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, DF, Mexico.


The pathogenesis of Alzheimer disease (AD) is complex and is certain to involve diverse etiological factors, but a central role has been strongly suggested for amyloid beta-protein (Abeta), based on genetic, biochemical and neurotoxicological evidence. In contrast with the well-documented effect of genetic mutations in Abeta overproduction, not much is known about the mechanisms involved in sporadic AD (SAD) which account for more than 95% of cases. Extensive data from patients and in vivo animal models indicate that oxidative stress is one of the cardinal factors most frequently associated with this neurodegenerative disease. The aim of the present study was to explore the effect of oxidative stress on the normally expressed wild-type amyloid precursor protein (APP) in human neuroblastoma cells, which represents a more physiological model of neuronal Abeta generation. Since H(2)O(2) is the main source of the highly reactive hydroxyl radical in the brain, and FeCl(2) can stimulate oxidative stress, including the formation of the hydroxyl radical from H(2)O(2), in the present work we studied the effect of these two pro-oxidant molecules on the levels and processing of human APP by alpha-, beta- and gamma-secretase, and the role of the stress-activated kinase c-jun N-terminal kinase (JNK). We provide evidence for a dual modulation of amyloid precursor protein metabolism in differentiated human neuroblastoma cells related with a down-regulation of alpha-secretase and up-regulation of gamma-secretase, and particularly of beta-secretase and also a JNK depending Abeta generation.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center