Format

Send to

Choose Destination
See comment in PubMed Commons below
Trends Cell Biol. 2009 Jul;19(7):306-16. doi: 10.1016/j.tcb.2009.04.002. Epub 2009 Jun 25.

Intraflagellar transport and the generation of dynamic, structurally and functionally diverse cilia.

Author information

1
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.

Abstract

Cilia are organelles that project from most eukaryotic organisms and cell types. Their pervasiveness stems from having remarkably versatile propulsive and sensory functions, which in humans are recognized to have essential roles in physiology and development. Under-appreciated, however, are their diverse ultrastructures and typically bipartite organization consisting of doublet and singlet microtubules. Moreover, the overall shapes of the membrane-ensheathed cilia are varied, as exemplified by differences between hair-like olfactory cilia and rod- or cone-shaped photoreceptor connecting cilia-outer segments. Although cell-specific transcriptional programs are evidently crucial in establishing ciliary morphological specialization, few players directly involved in generating such diversity are known. Recent findings suggest that at least two molecular motors (kinesin-II and OSM-3/KIF17) can differentially mobilize the intraflagellar transport machinery required for ciliogenesis and, presumably, different cargo to help generate dynamic, structurally and functionally distinct cilia.

PMID:
19560357
DOI:
10.1016/j.tcb.2009.04.002
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center