Send to

Choose Destination
J Mol Biol. 2009 Aug 21;391(3):621-34. doi: 10.1016/j.jmb.2009.06.051. Epub 2009 Jun 25.

The non-canonical Hop protein from Caenorhabditis elegans exerts essential functions and forms binary complexes with either Hsc70 or Hsp90.

Author information

Center for Integrated Protein Science and Department Chemie, Technische Universit√§t M√ľnchen, 85747 Garching, Germany.


Heat shock protein (Hsp) 70/Hsp90-organizing proteins (Hop/Sti1) are thought to function as adaptor proteins to link the two chaperone machineries Hsp70 and Hsp90 during the processing of substrate proteins in eukaryotes. Hop (Hsp70/Hsp90-organizing protein) is composed of three tetratricopeptide repeat (TPR) domains, of which the first (TPR1) binds to Hsp70, the second (TPR2A) binds to Hsp90, and the third (TPR2B) is of unknown function. Contrary to most other eukaryotes, the homologue closest to the Caenorhabditis elegans Hop homologue R09E12.3 (CeHop) lacks the TPR1 domain and the short linker region connecting it to TPR2A, questioning the reported function as an Hsp90/Hsp70 adaptor in vitro and in vivo. We observed high constitutive expression levels of CeHop and detected significant phenotypes upon knockdown, linking the protein to functions in gonad development. Interestingly, we observed physical interactions with both chaperones Hsp70 and Hsp90, albeit only the interaction with Hsp90 is strong and inhibition of the Hsp90 ATPase activity can be observed upon binding of CeHop. However, the formation of ternary complexes with both chaperone machineries is impaired, as Hsp70 and Hsp90 compete for CeHop interaction sites, in particular as Hsp90 binds to both TPR domains simultaneously and requires both TPR domains for ATPase regulation. These results imply that, at least in C. elegans, essential functions of Hop exist which apparently do not depend on the simultaneous binding of Hsp90 and Hsp70 to Hop.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center