Format

Send to

Choose Destination
See comment in PubMed Commons below
BMC Biotechnol. 2009 Jun 28;9:58. doi: 10.1186/1472-6750-9-58.

Cell-free protein synthesis energized by slowly-metabolized maltodextrin.

Author information

1
Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA. yiran@vt.edu

Abstract

BACKGROUND:

Cell-free protein synthesis (CFPS) is a rapid and high throughput technology for obtaining proteins from their genes. The primary energy source ATP is regenerated from the secondary energy source through substrate phosphorylation in CFPS.

RESULTS:

Distinct from common secondary energy sources (e.g., phosphoenolpyruvate - PEP, glucose-6-phosphate), maltodextrin was used for energizing CFPS through substrate phosphorylation and the glycolytic pathway because (i) maltodextrin can be slowly catabolized by maltodextrin phosphorylase for continuous ATP regeneration, (ii) maltodextrin phosphorylation can recycle one phosphate per reaction for glucose-1-phosphate generation, and (iii) the maltodextrin chain-shortening reaction can produce one ATP per glucose equivalent more than glucose can. Three model proteins, esterase 2 from Alicyclobacillus acidocaldarius, green fluorescent protein, and xylose reductase from Neurospora crassa were synthesized for demonstration.

CONCLUSION:

Slowly-metabolized maltodextrin as a low-cost secondary energy compound for CFPS produced higher levels of proteins than PEP, glucose, and glucose-6-phospahte. The enhancement of protein synthesis was largely attributed to better-controlled phosphate levels (recycling of inorganic phosphate) and a more homeostatic reaction environment.

PMID:
19558718
PMCID:
PMC2716334
DOI:
10.1186/1472-6750-9-58
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center