Send to

Choose Destination
See comment in PubMed Commons below
Eye (Lond). 2010 Jan;24(1):145-51. doi: 10.1038/eye.2009.157. Epub 2009 Jun 26.

High glucose attenuates insulin-induced VEGF expression in bovine retinal microvascular endothelial cells.

Author information

Department of Ophthalmology, The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China.



To investigate the effect of high glucose on insulin-induced vascular endothelial growth factor (VEGF) expression in bovine retinal microvascular endothelial cells (BRECs) and to probe into related mechanisms.


BRECs were isolated as primary cultures and identified by immunostaining. Passage cells were initially exposed to normal (5 mM) or high glucose (30 mM) for 3 days, and equimolar L-glucose was supplemented for osmotic equation. BRECs were then treated with 100 nM insulin for 24 h or not, and cells were prepared for the determination of VEGF mRNA expression by real-time PCR. VEGF protein was determined by human umbilical vein endothelial cell proliferation assay, immunofluorescence, and ELISA. BRECs were treated with 5 or 30 mM glucose for 3 days and then cells cultured with 5 mM glucose were exposed to the PI3-K inhibitor wortmannin (100 nM), the P42/44 mitogen-activated protein kinase (MAPK) inhibitor U0126 (50 microM), or to the protein kinase C (PKC) inhibitor GF109203X (2 microM) 1 h before addition of 100 nM insulin. Twenty-four hours after incubation with insulin, the cells were subjected to real-time PCR and ELISA analyses.


Insulin or high glucose alone markedly increased VEGF mRNA and protein levels in BRECs (P<0.05, two-way ANOVA). However, the combination of insulin and high glucose displayed a weaker effect in promoting VEGF expression than did insulin alone (P<0.05, t-test). Pretreatment of cells with PI3-K inhibitor significantly (P<0.05, one-way ANOVA) suppressed the insulin-induced VEGF expression; neither pretreatment with the PKC inhibitor nor with the P42/p44 MAPK inhibitor showed an effect on the expression of VEGF at the mRNA or protein level (P>0.05, one-way ANOVA).


Both insulin and high glucose can markedly increase VEGF expression in BRECs at the mRNA and protein level. We propose that insulin may upregulate VEGF expression through the PI3-K signalling pathway in BRECs, and high glucose may attenuate insulin-induced VEGF expression by impairing PI3-K signalling pathways.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center