Send to

Choose Destination
See comment in PubMed Commons below
J Virol. 2009 Sep;83(17):8502-13. doi: 10.1128/JVI.00859-09. Epub 2009 Jun 24.

Subtype-specific differences in the human immunodeficiency virus type 1 reverse transcriptase connection subdomain of CRF01_AE are associated with higher levels of resistance to 3'-azido-3'-deoxythymidine.

Author information

  • 1Viral Mutation Section, Host-Virus Interaction Branch, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA.


We previously shown that mutations in the connection (CN) subdomain of human immunodeficiency virus type 1 (HIV-1) subtype B reverse transcriptase (RT) increase 3'-azido-3'-deoxythymidine (AZT) resistance in the context of thymidine analog mutations (TAMs) by affecting the balance between polymerization and RNase H activity. To determine whether this balance affects drug resistance in other HIV-1 subtypes, recombinant subtype CRF01_AE was analyzed. Interestingly, CRF01_AE containing TAMs exhibited 64-fold higher AZT resistance relative to wild-type B, whereas AZT resistance of subtype B containing the same TAMs was 13-fold higher, which in turn correlated with higher levels of AZT-monophosphate (AZTMP) excision on both RNA and DNA templates. The high level of AZT resistance exhibited by CRF01_AE was primarily associated with the T400 residue in wild-type subtype AE CN subdomain. An A400T substitution in subtype B enhanced AZT resistance, increased AZTMP excision on both RNA and DNA templates, and reduced RNase H cleavage. Replacing the T400 residue in CRF01_AE with alanine restored AZT sensitivity and reduced AZTMP excision on both RNA and DNA templates, suggesting that the T400 residue increases AZT resistance in CRF01_AE at least in part by directly increasing the efficiency of AZTMP excision. These results show for the first time that CRF01_AE exhibits higher levels of AZT resistance in the presence of TAMs and that this resistance is primarily associated with T400. Our results also show that mixing the RT polymerase, CN, and RNase H domains from different subtypes can underestimate AZT resistance levels, and they emphasize the need to develop subtype-specific genotypic and phenotypic assays to provide more accurate estimates of clinical drug resistance.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center