Send to

Choose Destination
J Morphol. 2009 Nov;270(11):1400-12. doi: 10.1002/jmor.10764.

Development of cardiac form and function in ectothermic sauropsids.

Author information

Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202, USA.


Evolutionary morphologists and physiologists have long recognized the phylogenetic significance of the ectothermic sauropsids. Sauropids have been classically considered to bridge between early tetrapods, ectotherms, and the evolution of endotherms. This transition has been associated with many modifications in cardiovascular form and function, which have changed dramatically during the course of vertebrate evolution. Most cardiovascular studies have focused upon adults, leaving the development of this critical system largely unexplored. In this essay, we attempt a synthesis of sauropsid cardiovascular development based on the limited literature and indicate fertile regions for future studies. Early morphological cardiovascular development, i.e., the basic formation of the tube heart and the major pulmonary and systemic vessels, is similar across tetrapods. Subsequent cardiac chamber development, however, varies considerably between developing chelonians, squamates, crocodilians, and birds, reflected in the diversity of adult ventricular structure across these taxa. The details of how these differences in morphology develop, including the molecular regulation of cardiac and vascular growth and differentiation, are still poorly understood. In terms of the functional maturation of the cardiovascular system, reflected in physiological mechanisms for regulating heart rate and cardiac output, recent work has illustrated that changes during ontogeny in parameters such as heart rate and arterial blood pressure are somewhat species-dependent. However, there are commonalities, such as a beta-adrenergic receptor tone on the embryonic heart appearing prior to 60% of development. Differential gross morphological responses to environmental stressors (oxygen, hydration, temperature) have been investigated interspecifically, revealing that cardiac development is relatively plastic, especially, with respect to change in heart growth. Collectively, the data assembled here reflects the current limited morphological and physiological understanding of cardiovascular development in sauropsids and identifies key areas for future studies of this diverse vertebrate lineage.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center