Send to

Choose Destination
See comment in PubMed Commons below
Circ Res. 1991 Dec;69(6):1632-9.

Inositol trisphosphate promotes Na-Ca exchange current by releasing calcium from sarcoplasmic reticulum in cardiac myocytes.

Author information

Department of Pharmacology, University of Connecticut Health Center, Farmington 06030.


An early inward tail current evoked by membrane depolarization (from -80 to -40 mV) sufficient to activate sodium but not calcium current was studied in single voltage-clamped ventricular myocytes isolated from guinea pig hearts. Like forward-mode Na-Ca exchange, this early inward tail current required [Na+]o and [Ca2+]i and is thought to follow earlier reverse-mode Na-Ca exchange that triggers Ca2+ release from sarcoplasmic reticulum. The dependence of the early inward tail current on [Ca2+]i was supported by the ability of small (+10 mV) and large (+80 mV) voltage jumps from -40 mV to decrease and increase, respectively, the size of early inward tail currents evoked by subsequent voltage steps from -80 to -40 mV. As expected, tetrodotoxin selectively inhibited the early inward tail current but not the late inward tail current that followed voltage jumps to +40 mV test potentials. Although tetrodotoxin also blocked the fast Na+ current, replacement of extracellular Na+ by Li+ sustained the fast Na+ current. However, Li+, which does not support Na-Ca exchange, reversibly suppressed both the early and late inward tail currents. Inhibitors (ryanodine and caffeine) and promoters (intracellularly dialyzed inositol 1,4,5-trisphosphate) of sarcoplasmic reticulum Ca2+ release decreased and increased, respectively, the magnitude of the early inward tail current. The results substantiate the hypothesis that Ca2+ release from the sarcoplasmic reticulum participates in early Na-Ca exchange current and demonstrate that inositol 1,4,5-trisphosphate, by releasing Ca2+ from the sarcoplasmic reticulum, can promote Na-Ca exchange across the plasma membrane.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center