Format

Send to

Choose Destination
Stem Cells. 2009 Jul;27(7):1524-8. doi: 10.1002/stem.84.

MicroRNA 92b controls the G1/S checkpoint gene p57 in human embryonic stem cells.

Author information

1
Morgridge Institute for Research, Madison, Wisconsin, USA.

Abstract

Human embryonic stem (ES) cells exhibit a shorter G(1) cell cycle phase than most somatic cells. Here, we examine the role of an abundant, human ES cell-enriched microRNA, miR-92b, in cell cycle distribution. Inhibition of miR-92b in human ES cells results in a greater number of cells in the G(1) phase and a lower number in the S phase. Conversely, overexpression of miR-92b in differentiated cells results in a decreased number of cells in G1 phase and an increased number in S-phase. p57, a gene whose product inhibits G(1) to S-phase progression, is one of the predicted targets of miR-92b. Inhibition of miR-92b in human ES cells increases p57 protein levels, and miR-92b overexpression in differentiated cells decreases p57 protein levels. Furthermore, miR-92b inhibits a luciferase reporter construct that includes part of the 3' untranslated region of the p57 gene containing the predicted target of the miR-92b seed sequence. Thus, we show that the miRNA miR-92b directly downregulates protein levels of the G(1)/S checkpoint gene p57. STEM CELLS 2009;27:1524-1528.

PMID:
19544458
DOI:
10.1002/stem.84
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center