Format

Send to

Choose Destination
Nat Struct Mol Biol. 2009 Jul;16(7):717-24. doi: 10.1038/nsmb.1620. Epub 2009 Jun 21.

Control of alternative splicing through siRNA-mediated transcriptional gene silencing.

Author information

1
Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.

Abstract

When targeting promoter regions, small interfering RNAs (siRNAs) trigger a previously proposed pathway known as transcriptional gene silencing by promoting heterochromatin formation. Here we show that siRNAs targeting intronic or exonic sequences close to an alternative exon regulate the splicing of that exon. The effect occurred in hepatoma and HeLa cells with siRNA antisense strands designed to enter the silencing pathway, suggesting hybridization with nascent pre-mRNA. Unexpectedly, in HeLa cells the sense strands were also effective, suggesting that an endogenous antisense transcript, detectable in HeLa but not in hepatoma cells, acts as a target. The effect depends on Argonaute-1 and is counterbalanced by factors favoring chromatin opening or transcriptional elongation. The increase in heterochromatin marks (dimethylation at Lys9 and trimethylation at Lys27 of histone H3) at the target site, the need for the heterochromatin-associated protein HP1alpha and the reduction in RNA polymerase II processivity suggest a mechanism involving the kinetic coupling of transcription and alternative splicing.

PMID:
19543290
DOI:
10.1038/nsmb.1620
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center