Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Biotechnol. 2009 Jun;20(3):257-63. doi: 10.1016/j.copbio.2009.05.011. Epub 2009 Jun 17.

Energy biotechnology with cyanobacteria.

Author information

  • 1Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.

Abstract

The world's future energy demand calls for a sustainable alternative for the use of fossil fuels, to restrict further global warming. Harvesting solar energy via photosynthesis is one of Nature's remarkable achievements. Existing technologies exploit this process for energy 'production' via processing of, for example, part of plant biomass into ethanol, and of algal biomass into biodiesel. Fortifying photosynthetic organisms with the ability to produce biofuels directly would bypass the need to synthesize all the complex chemicals of 'biomass'. A promising way to achieve this is to redirect cyanobacterial intermediary metabolism by channeling (Calvin cycle) intermediates into fermentative metabolic pathways. This review describes this approach via the biosynthesis of fermentation end products, like alcohols and hydrogen, driven by solar energy, from water (and CO2).

PMID:
19540103
DOI:
10.1016/j.copbio.2009.05.011
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center