Format

Send to

Choose Destination
J Evol Biol. 2009 Aug;22(8):1563-85. doi: 10.1111/j.1420-9101.2009.01775.x. Epub 2009 Jun 17.

The common patterns of nature.

Author information

1
Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA. safrank@uci.edu

Abstract

We typically observe large-scale outcomes that arise from the interactions of many hidden, small-scale processes. Examples include age of disease onset, rates of amino acid substitutions and composition of ecological communities. The macroscopic patterns in each problem often vary around a characteristic shape that can be generated by neutral processes. A neutral generative model assumes that each microscopic process follows unbiased or random stochastic fluctuations: random connections of network nodes; amino acid substitutions with no effect on fitness; species that arise or disappear from communities randomly. These neutral generative models often match common patterns of nature. In this paper, I present the theoretical background by which we can understand why these neutral generative models are so successful. I show where the classic patterns come from, such as the Poisson pattern, the normal or Gaussian pattern and many others. Each classic pattern was often discovered by a simple neutral generative model. The neutral patterns share a special characteristic: they describe the patterns of nature that follow from simple constraints on information. For example, any aggregation of processes that preserves information only about the mean and variance attracts to the Gaussian pattern; any aggregation that preserves information only about the mean attracts to the exponential pattern; any aggregation that preserves information only about the geometric mean attracts to the power law pattern. I present a simple and consistent informational framework of the common patterns of nature based on the method of maximum entropy. This framework shows that each neutral generative model is a special case that helps to discover a particular set of informational constraints; those informational constraints define a much wider domain of non-neutral generative processes that attract to the same neutral pattern.

PMID:
19538344
PMCID:
PMC2824446
DOI:
10.1111/j.1420-9101.2009.01775.x
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center