Format

Send to

Choose Destination
Opt Express. 2007 Mar 19;15(6):2810-21.

Image formation in fluorescence coherence-gated imaging through scattering media.

Abstract

Recently, we have experimentally demonstrated a new form of cross-sectional, coherence-gated fluorescence imaging referred to as SD-FCT ('spectral-domain fluorescence coherence tomography'). Imaging in SD-FCT is accomplished by spectrally detecting self-interference of the spontaneous emission of fluorophores, thereby providing depth-resolved information on the axial positions of fluorescent probes. Here, we present a theoretical investigation of the factors affecting the detected SD-FCT signal through scattering media. An imaging equation for SD-FCT is derived that includes the effects of defocusing, numerical-aperture, and the optical properties of the medium. A comparison between the optical sectioning capabilities of SD-FCT and confocal microscopy is also presented. Our results suggest that coherence gating in fluorescence imaging may provide an improved approach for depth-resolved imaging of fluorescently labeled samples; high axial resolution (a few microns) can be achieved with low numerical apertures (NA<0.09) while maintaining a large depth of field (a few hundreds of microns) in a relatively low scattering medium (6 mean free paths), whereas moderate NA's can be used to enhance depth selectivity in more highly scattering biological samples.

PMID:
19532519

Supplemental Content

Full text links

Icon for Optical Society of America
Loading ...
Support Center