Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 2009 Jun 17;96(12):4993-5002. doi: 10.1016/j.bpj.2009.03.051.

Coarse-grained description of protein internal dynamics: an optimal strategy for decomposing proteins in rigid subunits.

Author information

Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.


The possibility of accurately describing the internal dynamics of proteins, in terms of movements of a few approximately-rigid subparts, is an appealing biophysical problem with important implications for the analysis and interpretation of data from experiments or numerical simulations. The problem is tackled here by means of a novel variational approach that exploits information about equilibrium fluctuations of interresidues distances, provided, e.g., by atomistic molecular dynamics simulations or coarse-grained models. No contiguity in primary sequence or in space is enforced a priori for amino acids grouped in the same rigid unit. The identification of the rigid protein moduli, or dynamical domains, provides valuable insight into functionally oriented aspects of protein internal dynamics. To illustrate this point, we first discuss the decomposition of adenylate kinase and HIV-1 protease and then extend the investigation to several representatives of the hydrolase enzymatic class. The known catalytic site of these enzymes is found to be preferentially located close to the boundary separating the two primary dynamical subdomains.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center