Format

Send to

Choose Destination
Magn Reson Med. 2009 Sep;62(3):574-82. doi: 10.1002/mrm.22057.

Assessment of (31)P relaxation times in the human calf muscle: a comparison between 3 T and 7 T in vivo.

Author information

1
Department of Radiology, Medical University Vienna, Vienna, Austria.

Abstract

Phosphorus ((31)P) T(1) and T(2) relaxation times in the resting human calf muscle were assessed by interleaved, surface coil localized inversion recovery and frequency-selective spin-echo at 3 and 7 T. The obtained T(1) (mean +/- SD) decreased significantly (P < 0.05) from 3 to 7 T for phosphomonoesters (PME) (8.1 +/- 1.7 s to 3.1 +/- 0.9 s), phosphodiesters (PDE) (8.6 +/- 1.2 s to 6.0 +/- 1.1 s), phosphocreatine (PCr) (6.7 +/- 0.4 s to 4.0 +/- 0.2 s), gamma-NTP (nucleotide triphosphate) (5.5 +/- 0.4 s to 3.3 +/- 0.2 s), alpha-NTP (3.4 +/- 0.3 s to 1.8 +/- 0.1 s), and beta-NTP (3.9 +/- 0.4 s to 1.8 +/- 0.1 s), but not for inorganic phosphate (Pi) (6.9 +/- 0.6 s to 6.3 +/- 1.0 s). The decrease in T(2) was significant for Pi (153 +/- 9 ms to 109 +/- 17 ms), PDE (414 +/- 128 ms to 314 +/- 35 ms), PCr (354 +/- 16 ms to 217 +/- 14 ms), and gamma-NTP (61.9 +/- 8.6 ms to 29.0 +/- 3.3 ms). This decrease in T(1) with increasing field strength of up to 62% can be explained by the increasing influence of chemical shift anisotropy on relaxation mechanisms and may allow shorter measurements at higher field strengths or up to 62% additional signal-to-noise ratio (SNR) per unit time. The fully relaxed SNR increased by +96%, while the linewidth increased from 6.5 +/- 1.2 Hz to 11.2 +/- 1.9 Hz or +72%. At 7 T (31)P-MRS in the human calf muscle offers more than twice as much SNR per unit time in reduced measurement time compared to 3 T. This will facilitate in vivo (31)P-MRS of the human muscle at 7 T.

PMID:
19526487
DOI:
10.1002/mrm.22057
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center