Send to

Choose Destination
See comment in PubMed Commons below
Arterioscler Thromb Vasc Biol. 2009 Sep;29(9):1376-82. doi: 10.1161/ATVBAHA.109.191585. Epub 2009 Jun 11.

Lysophosphatidylcholine activates a novel PKD2-mediated signaling pathway that controls monocyte migration.

Author information

Department of Pathobiology, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996, USA.



Monocyte activation and migration are crucial events in the development of atherosclerosis and other inflammatory diseases. This study examined the role of protein kinase D (PKD) in monocyte migration. Method and Results- PKD2 is the predominant isoform of PKD expressed in monocytic THP-1 cells and primary human monocytes. Lysophosphatidylcholine (lysoPC), a prominent component of oxidized low-density lipoprotein, induces rapid and marked PKD activation in these cells. Using multiple approaches, including dominant-negative mutants and small interfering RNA knock-down, we found that lysoPC-induced PKD2 activation was required for the activation of both ERK and p38 MAPK. p38 MAPK mediation of lysoPC-induced monocytic cell migration was reported previously; our results reveal that the lysoPC-induced PKD2-p38 pathway controls monocyte migration.


This study provides the first evidence that (1) lysoPC activates PKD, (2) PKD2 has a novel role in p38 activation, and (3) the PKD2-activated p38 pathway is responsible for lysoPC-induced migration of THP-1 cells and human monocytes. Thus, PKD is a novel and functional intracellular regulator in both lysoPC signaling and monocyte migration. These results suggest a new role for PKD2 in the development of atherosclerosis and other inflammatory diseases.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center