Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2009 Jun 10;29(23):7569-81. doi: 10.1523/JNEUROSCI.1445-09.2009.

Wnt5a mediates nerve growth factor-dependent axonal branching and growth in developing sympathetic neurons.

Author information

Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA.


Nerve growth factor (NGF) is a potent survival and axon growth factor for neuronal populations in the peripheral nervous system. Although the mechanisms by which target-derived NGF influences survival of innervating neurons have been extensively investigated, its regulation of axonal growth and target innervation are just being elucidated. Here, we identify Wnt5a, a member of the Wnt family of secreted growth factors, as a key downstream effector of NGF in mediating axonal branching and growth in developing sympathetic neurons. Wnt5a is robustly expressed in sympathetic neurons when their axons are innervating NGF-expressing targets. NGF:TrkA signaling enhances neuronal expression of Wnt5a. Wnt5a rapidly induces axon branching while it has a long-term effect on promoting axon extension. Loss of Wnt5a function revealed that it is necessary for NGF-dependent axonal branching and growth, but not survival, in vitro. Furthermore, Wnt5a(-/-) mice display reduced innervation of NGF-expressing target tissues, and a subsequent increase in neuronal apoptosis, in vivo. Wnt5a functions in developing sympathetic neurons by locally activating protein kinase C in axons. Together, our findings define a novel regulatory pathway in which Wnt5a, expressed in sympathetic neurons in response to target-derived NGF, regulates innervation of peripheral targets.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center