Format

Send to

Choose Destination
See comment in PubMed Commons below
J Struct Biol. 2009 Oct;168(1):90-4. doi: 10.1016/j.jsb.2009.05.010. Epub 2009 Jun 7.

Multivalent ligand-receptor binding on supported lipid bilayers.

Author information

1
Department of Chemistry, Texas A&M University, College Station, 77843-3012, USA.

Abstract

Fluid supported lipid bilayers provide an excellent platform for studying multivalent protein-ligand interactions because the two-dimensional fluidity of the membrane allows for lateral rearrangement of ligands in order to optimize binding. Our laboratory has combined supported lipid bilayer-coated microfluidic platforms with total internal reflection fluorescence microscopy (TIRFM) to obtain equilibrium dissociation constant (K(D)) data for these systems. This high throughput, on-chip approach provides highly accurate thermodynamic information about multivalent binding events while requiring only very small sample volumes. Herein, we review some of the most salient findings from these studies. In particular, increasing ligand density on the membrane surface can provide a modest enhancement or attenuation of ligand-receptor binding depending upon whether the surface ligands interact strongly with each other. Such effects, however, lead to little more than one order of magnitude change in the apparent K(D) values. On the other hand, the lipophilicity and presentation of lipid bilayer-conjugated ligands can have a much greater impact. Indeed, changing the way a particular ligand is conjugated to the membrane can alter the apparent K(D) value by at least three orders of magnitude. Such a result speaks strongly to the role of ligand availability for multivalent ligand-receptor binding.

PMID:
19508894
PMCID:
PMC2752984
DOI:
10.1016/j.jsb.2009.05.010
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center