Format

Send to

Choose Destination
See comment in PubMed Commons below
Dev Dyn. 2009 Jul;238(7):1836-50. doi: 10.1002/dvdy.21990.

Identification of vasculature-specific genes by microarray analysis of Etsrp/Etv2 overexpressing zebrafish embryos.

Author information

1
Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, Ohio 45229, USA.

Abstract

Signaling pathways controlling vasculogenesis, angiogenesis, and myelopoiesis are still poorly understood, in part because not all genes important for vasculature or myeloid cell formation have been characterized. To identify novel potential regulators of vasculature and myeloid cell formation we performed microarray analysis of zebrafish embryos that overexpress Ets1-related protein (Etsrp/Etv2/ER71), sufficient to induce vasculogenesis and myelopoiesis (Sumanas and Lin [2006] Development 121:3141-3150; Lee [2008] Cell Stem Cell 2:497-507; Sumanas et al. [2008] Blood 111:4500-4510). We performed sequence homology and expression analysis for up-regulated genes that were novel or previously unassociated with the zebrafish vasculature formation. Angiotensin II type 2 receptor (agtr2), src homology 2 domain containing E (she), mannose receptor C1 (mrc1), endothelial cell-specific adhesion molecule (esam), yes-related kinase (yrk/fyn), zinc finger protein, multitype 2b (zfpm2b/fog2b), and stabilin 2 (stab2) were specifically expressed in vascular endothelial cells during early development while keratin18 expression was localized to the myeloid cells. Identification of vasculature and myeloid-specific genes will be important for dissecting molecular mechanisms of vasculogenesis/angiogenesis and myelopoiesis.

PMID:
19504456
DOI:
10.1002/dvdy.21990
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center