Format

Send to

Choose Destination
See comment in PubMed Commons below
FASEB J. 2009 Oct;23(10):3273-88. doi: 10.1096/fj.08-123414. Epub 2009 Jun 4.

CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts.

Author information

  • 1Vascular Biology Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

Abstract

Tetraspanin CD82 suppresses cell migration, tumor invasion, and tumor metastasis. To determine the mechanism by which CD82 inhibits motility, most studies have focused on the cell surface CD82, which forms tetraspanin-enriched microdomains (TEMs) with other transmembrane proteins, such as integrins. In this study, we found that CD82 undergoes endocytosis and traffics to endosomes and lysosomes. To determine the endocytic mechanism of CD82, we demonstrated that dynamin and clathrin are not essential for CD82 internalization. Depletion or sequestration of sterol in the plasma membrane markedly inhibited the endocytosis of CD82. Despite the demand on Cdc42 activity, CD82 endocytosis is distinct from macropinocytosis and the documented dynamin-independent pinocytosis. As a TEM component, CD82 reorganizes TEMs and lipid rafts by redistributing cholesterol into these membrane microdomains. CD82-containing TEMs are characterized by the cholesterol-containing microdomains in the extreme light- and intermediate-density fractions. Moreover, the endocytosis of CD82 appears to alleviate CD82-mediated inhibition of cell migration. Taken together, our studies demonstrate that lipid-dependent endocytosis drives CD82 trafficking to late endosomes and lysosomes, and CD82 reorganizes TEMs and lipid rafts through redistribution of cholesterol.

PMID:
19497983
PMCID:
PMC2747672
DOI:
10.1096/fj.08-123414
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center