Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Proteomics. 2009 Sep;8(9):2102-18. doi: 10.1074/mcp.M900029-MCP200. Epub 2009 Jun 3.

Proteome analysis of Plasmodium falciparum extracellular secretory antigens at asexual blood stages reveals a cohort of proteins with possible roles in immune modulation and signaling.

Author information

1
Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.

Abstract

The highly co-evolved relationship of parasites and their hosts appears to include modulation of host immune signals, although the molecular mechanisms involved in the host-parasite interplay remain poorly understood. Characterization of these key genes and their cognate proteins related to the host-parasite interplay should lead to a better understanding of this intriguing biological phenomenon. The malaria agent Plasmodium falciparum is predicted to export a cohort of several hundred proteins to remodel the host erythrocyte. However, proteins actively exported by the asexual intracellular parasite beyond the host red blood cell membrane (before merozoite egress) have been poorly investigated so far. Here we used two complementary methodologies, two-dimensional gel electrophoresis/MS and LC-MS/MS, to examine the extracellular secreted antigens at asexual blood stages of P. falciparum. We identified 27 novel antigens exported by P. falciparum in the culture medium of which some showed clustering with highly polymorphic genes on chromosomes, suggesting that they may encode putative antigenic determinants of the parasite. Immunolocalization of four novel secreted proteins confirmed their export beyond the infected red blood cell membrane. Of these, preliminary functional characterization of two novel (Sel1 repeat-containing) parasite proteins, PfSEL1 and PfSEL2 revealed that they down-regulate expression of cell surface Notch signaling molecules in host cells. Also a novel protein kinase (PfEK) and a novel protein phosphatase (PfEP) were found to, respectively, phosphorylate/dephosphorylate parasite-specific proteins in the extracellular culture supernatant. Our study thus sheds new light on malaria parasite extracellular secreted antigens of which some may be essential for parasite development and could constitute promising new drug targets.

PMID:
19494339
PMCID:
PMC2742448
DOI:
10.1074/mcp.M900029-MCP200
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center