Send to

Choose Destination
See comment in PubMed Commons below
Stem Cells. 2009 Jun;27(6):1298-308. doi: 10.1002/stem.59.

Epigenetic landscaping during hESC differentiation to neural cells.

Author information

  • 1Institute of Human Genetics, University of Newcastle Upon Tyne, International Centre for Life, United Kingdom.


The molecular mechanisms underlying pluripotency and lineage specification from embryonic stem cells (ESCs) are still largely unclear. To address the role of chromatin structure in maintenance of pluripotency in human ESCs (hESCs) and establishment of lineage commitment, we analyzed a panel of histone modifications at promoter sequences of genes involved in maintenance of pluripotency, self-renewal, and in early stages of differentiation. To understand the changes occurring at lineage-specific gene regulatory sequences, we have established an efficient purification system that permits the examination of two distinct populations of lineage committed cells; fluorescence activated cell sorted CD133(+) CD45(-)CD34(-) neural stem cells and beta-III-tubulin(+) putative neurons. Here we report the importance of other permissive marks supporting trimethylation of Lysine 4 H3 at the active stem cell promoters as well as poised bivalent and nonbivalent lineage-specific gene promoters in hESCs. Methylation of lysine 9 H3 was found to play a role in repression of pluripotency-associated and lineage-specific genes on differentiation. Moreover, presence of newly formed bivalent domains was observed at the neural progenitor stage. However, they differ significantly from the bivalent domains observed in hESCs, with a possible role of dimethylation of lysine 9 H3 in repressing the poised genes.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center